Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis*

نویسندگان

  • Vladimir M Levdikov
  • Elena Blagova
  • Vicki L Young
  • Boris R Belitsky
  • Andrey Lebedev
  • Abraham L Sonenshein
  • Anthony J Wilkinson
چکیده

CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis.

Additional targets of CodY, a GTP-activated repressor of early stationary-phase genes in Bacillus subtilis, were identified by combining chromatin immunoprecipitation, DNA microarray hybridization, and gel mobility shift assays. The direct targets of CodY newly identified by this approach included regulatory genes for sporulation, genes that are likely to encode transporters for amino acids and...

متن کامل

Role of branched-chain amino acid transport in Bacillus subtilis CodY activity.

UNLABELLED CodY is a branched-chain amino acid-responsive transcriptional regulator that controls the expression of several dozen transcription units in Bacillus subtilis. The presence of isoleucine, valine, and leucine in the growth medium is essential for achieving high activity of CodY and for efficient regulation of the target genes. We identified three permeases-BcaP, BraB, and BrnQ-that a...

متن کامل

CodY regulates expression of the Bacillus subtilis extracellular proteases Vpr and Mpr.

UNLABELLED CodY is a global transcriptional regulator in low-G+C Gram-positive bacteria that is responsive to GTP and branched-chain amino acids. By interacting with its two cofactors, it is able to sense the nutritional and energetic status of the cell and respond by regulating expression of adaptive genetic programs. In Bacillus subtilis, more than 200 genes, including those for peptide trans...

متن کامل

Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids.

Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involvin...

متن کامل

Dissecting complex metabolic integration provides direct genetic evidence for CodY activation by guanine nucleotides.

The global regulator CodY controls the expression of dozens of metabolic genes and genes mediating adaptation to nutrient availability in many low-G+C Gram-positive bacteria. Branched-chain amino acids L-isoleucine, L-leucine, and L-valine (ILV) activate CodY both in vivo and in vitro, and genes that direct their synthesis (ilv, ybgE, and ywaA) are highly repressed by CodY, creating a potential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2017